一种大视角重建折射率场的简易方法

高益庆 康 琦 丁汉泉

(北京航空**学院)**

提 要

本文设计了一种双照明光双参考光的全息干涉系统, 能在一块干板上一次记录 90° 连续视角范围的干涉 图。通过计算机模拟的噪声数据,考查了一种简单重建方法——卷积法的重建精度和抗噪声性能; 通过以上系统获得的试验数据,重建了一个截面上的温度分布,并与热电偶测得的值进行了比较。

一、引 言

用全息干涉术重建三维折射率场,要求获得和分析各个方向的干涉图。无论是对于稳态场还是非稳态场,一次获得大视场的干涉图都具有实际意义。Mutalke 和 Collins¹²¹提出的用数块干板的全息记录系统,虽可获得较宽视场的信息,但干板间的一些信息难以获得,且光路装置较庞杂。Murata等人¹⁰⁰设计了一种宽视场的全息干涉仪,但需要对光学反射镜的制作、全息记录介质的成型提出特别的要求。本文利用全息光栅的衍射功能和毛玻璃的漫反射特性,设计了一种双照明光双参考光全息干涉系统,能在一块干板上一次获得大视角连续范围内的干涉图,为重建折射率场提供曝光瞬间的干涉数据。在重建三维场的计算方法中,卷积法是一种较简单的方法。本文利用计算机模拟的噪声数据,考查了卷积法的重建精度和抗噪声能力,应用以上光学系统获得的实验数据,重建了某一特定平面内的火焰温度分布,并用热电偶直接测量了少数几点的温度,两者比较接近。

二、大视场全息干涉系统

图1 是本文设计的大视场全息干涉系统,由反射镜 M1和 M6 反射的两束光经扩束镜 后直接投射到记录介质平面;由反射镜 M3和 M5 反射的两束光经扩束镜和场镜后成两束 平行光直接投射到相位光栅,作为照明物光,其夹角可根据相位光栅的衍射角范围进行适当 的调整。物场置于转台上,物场前的毛玻璃是作为获得漫射照明物光的表面漫反射器。众 所周知,漫射照明干涉术不仅能使记录平面光强较均匀,有效地消除由于光学元件上的尘埃 等引起的衍射噪声,而且能用肉眼从不同的方向观察全息图;但不足之处主要是干涉条纹的 清晰度和分辨率要受到激光散斑的限制,若条纹的宽度 d,和散斑尺寸 b。为同一量级,则难 以分辨干涉条纹。因而,在调试光路时,要满足规范 b.<dr。其次,由毛玻璃带来的漫射照明 另一不足之处是散射角有限,其散射的光强在约 9° 左右便碱至极大值的一半。为了获得大

收稿日期: 1987年1月27日; 收到修改稿日期: 1987年4月30日

光

视角范围的照明物光,特在毛玻璃前加入一块全息相位光栅。我们制作的全息相位光栅,可

使一束平行光变为彼此夹角为9°的9 束平行光,即可在70°视角范围内提供 9个方向的干涉图,而9°间的干涉图则 由毛玻璃的漫射光提供。

8卷

系统中安排的两束照明光,可进一步拓宽视角范围,两束参考光可使整块 干板照度较均匀。调整可变分束镜 2,可 使两束照明光强度接近,调整可变分束 镜 3,可使两束参考光强度接近,调整可 变分束镜 1,可以得到合适的物参比。 座落在转台中心的双灯芯无水乙醇

Fig. 2 The seven directional interferograms of a flame temperature field

灯,作为模拟的温度场火焰源,灯芯直径 2mm,灯芯间距为 11 mm。采用两次曝光技术,在 一块干板上一次记录了 90° 视角的折射率(温度)场的信息。将处理好的全息 干板 复归原 位,用原参考光再现,用肉眼能清楚地看到 90° 视角范围内连续变化的再现干涉虚像。用与 转台同轴的活动臂上的照相机,按视角间隔 5°,拍下了 19 张干涉图。图 2 是其中 7 个方向 的条纹图片。

三、卷积算法及其模拟运算

从全息图上获得的干涉数据,定量计算折射率场,已有多种重建方法,最简单的一种为 卷积算法。其计算公式为:

$$f(x, y) = \lambda \int_{-\pi/2}^{\pi/2} d\theta \int_{-\infty}^{\infty} N(p, \theta) q(-x \sin \theta + y \cos \theta - p) dp, \qquad (1)$$

$$q(l) = 2 \int_0^{\infty} RF_A(R) \cos(2\pi Rl) dR_o$$
⁽²⁾

(1)式中的f(x, y)为待重建的折射率差函数 $(n-n_0)$, λ 为激光波长, $N(p, \theta)$ 为相应的条纹 级数, q 为卷积函数, (2)式中的 F_4 为待选定的滤波函数, A 为滤波函数的带宽。

卷积法中有三个预定因素:

其一是采样方式的选取。按采样定理,干涉条纹的径向(p)采样间隔 d 应满足: $d < 1/2R_{\chi}(\beta)$ 。 (3)

 $R_{x}(\beta)$ 为相应于该方向 $\left(\beta = \theta + \frac{\pi}{2}\right)$ 的最大空间频率。角度采样的最大间隔 Δ 也要满足:

$$\Delta < 1/2R_{m}L_{m}, \tag{4}$$

*R*m 表示场的最大空间频率, *L*m 表示场区最大半径。从(3)式可知, 径向采样间隔随方向而变, 为方便起见, 本文取统一的采样间隔:

$$d = 2L_{\rm m}/I_{\rm m},\tag{5}$$

$$\Delta = \pi / J_{\text{mo}} \tag{6}$$

式中 I., 为径向采样点数, J., 为观察方向的总数。

由以上四式,不难得出:

$$J_{\mathfrak{m}} \leqslant \frac{\pi}{2} I_{\mathfrak{m}}, \tag{7}$$

定出了径向采样点数,可由(7)式定出角度采样点数。

其二是滤波函数的选取。对于无噪声数据,(2)式中的滤波函数选为理想限带滤波,它的带宽选为径向采样间隔的倒数 1/d。即:

$$F_{1/4} = \begin{cases} 1 & |R| < 1/2d, \\ 0 & \text{Hz}_{\circ} \end{cases}$$

当数据中有较大的随机噪声时,选择低通滤波,对抑制高频噪声有一定的效果。这里,仅选择广义汉明滤波,其带宽为 1/d;

$$F_{1/4}(R) = a + (1 - a)\cos(2\pi Rd), \quad 0 \le a \le 1_{\bullet}$$
(8)

其三是内插函数的选择。本文仅考虑三种简单的内插函数:

最近邻点内插:

$$C(l) = \begin{cases} 1 & |l| < d/2, \\ 1/2 & |l| = d/2, \\ 0 & |l| > d/2_{o} \end{cases}$$
(9)

线性内插:

$$C(l) = \begin{cases} 1 - \frac{|l|}{d} & |l| < d, \\ 0 & |l| \ge d_{o} \end{cases}$$
(10)

sin 0 函数内插:

$$O(l) = \sin O(l/d)_{\circ} \tag{11}$$

当采用广义汉明滤波后,由(8),(2)和(1)式不难得出下述离散公式:

$$f(x, y) = \lambda \Delta \sum_{J=J1}^{J_1} N_{\sigma} [-x \sin(J\Delta) + y \cos(J\Delta), J\Delta], \qquad (12)$$

$$N_{a}(Id, J\Delta) = \frac{1}{d} \left\{ \frac{1}{4} N(Id, J\Delta) - \frac{1}{\pi^{2}} \sum_{l=\pm\pm} \left[\frac{a}{l^{2}} - \frac{(1-a)(1-l^{2})}{(1-2l^{2}+l^{4})} \right] N[(I+l)d, J\Delta],$$
(13)

$$N_{\bullet}[-x\sin(J\Delta) + y\cos(J\Delta), J\Delta] = \sum N_{\bullet}(Id, J\Delta)O[-x\sin(J\Delta) + y\cos(J\Delta) - Id]_{\circ}$$
(14)

(13)式中的 a 由噪声级别确定:

$$(1-a)^{2} = \delta^{2} \Big/ d\Delta \sum_{J=J_{1}}^{J_{1}} \sum_{I=I_{1}}^{J_{1}} \Big| \hat{N}(Id, J\Delta) - \frac{1}{2} [\hat{N}(I+1, J) + \hat{N}(I-1, J)] \Big|^{2}$$
(15)

式中 δ 为条纹级数的总误差, N 为有误差的条纹级数。

我们在模拟运算中仅考虑条纹的截断误差:

$$(1-a)^{2} = \sum_{I} \sum_{I} |\hat{N}(I, J) - N(I, J)|^{2} / \sum_{I} \sum_{I} |\hat{N}(I, J)|^{2} - \frac{1}{2} [\hat{N}(I+1, J) + \hat{N}(I-1, J)]^{2}$$
(16)

本文采用下式作为模拟的温度场:

$$\begin{split} OT(x, y) = & T_0 + T_1 \exp[-8x^2 - 25(y + 0.22)^2] \\ & + T_2 \exp[-8x^2 - 25(y - 0.22)^2] \end{split}$$

通过折射率与温度转换关系式:

$$OT(x, y) = T_0 / \left[1 + \frac{f(x, y)}{n_0 - 1} \right]_0$$
(17)

式中, To与 no 为环境温度和折射率。经泊松数值积分, 获得模拟的干涉数据, 分别取条纹 截断误差为 ±0.005 级、±0.05 级和 ±0.5 级, 对卷积法的重建精度进行了考查, 结果见 表1 和表 2。其中温度的平均误差和最大误差定义为:

$$T_{tr} = \sum_{m=1}^{M} \sum_{n=1}^{N} |OT_{mn} - RT_{mn}| / (T_2 \times M \times N), \qquad (18)$$

$$T_{erm} = |OT_{mn} - RT_{vin}|_{max}/T_{2o}$$
⁽¹⁹⁾

上两式中, M×N 为场区总采样单元数, OT 为原始温度, RT 为重建的温度。

		error										
8	a	average	error(%)		mar. error (%)							
		interpolation										
		neighboring point	linear	sin C neighboring point		linear	sin C					
0.005	1	1.66	0.65	0.58	11.95	2.18	1.84					
0,03	1	1.65	0.74	0.81	9.59	2.01	1.94					
	0.8	1.48	1.04	0.83	10.44	4.72	2.78					
	1	5.66	4.16	5.93	18.09	10.53	16.69					
0.5	0.8	4.04	3.24	4.05	14.70	8.48	11.89					
	0.54	2,52	2.52	2.41	13.88	9.28	7.21					
	0.5	2.42	2.47	2.35	13.87	10.31	8.01					
cpu	1(s)	0.61	0.79	2.27								

Table 1 The influence of fringe roundoff error on reconstruction precision

Note: $I_{\mathcal{M}} \times 5_{\mathcal{M}} = 19 \times 16, \ M \times N = 7 \times 9.$

Table 2 The influence of sample number on reconstruction precision

ATTOT	sample number									
	$I_{M} \times 5_{M} = 19 \times 32$	I _M ×5 _M =19×27	$I_{M} \times 5_{M} = 13 \times 16$	I _M ×5 _M =19×16						
average %	0.55	0.59	0.94	0.66						
max. %	2 0	2.4	4.3	2.1						
cpu(s)	1.21	1.08	0.52	0.79						

Note: for linear interpolation: a=1, $M \times N = 7 \times 9$.

从表1可见,在条纹截断误差不大于 0.05 级的情况下,重建精度较好;在条纹截断误差 为±0.5级的情况下,用 a=0.5和 a=0.54的广义汉明滤波能起到一定的改善效果,此时 a值与(16)式计算结果相近;就三种内插法而言,sin C函数内插法较好,但它化的计算机时 大于线性内插法。表2表明径向采样点数影响较大。

四、实验数据处理及结果

作为一个应用实例,我们利用图1所示的全息系统获得的干涉数据,用卷积法计算了试件底座上方 20mm 水平截面内的温度分布。温度场的坐标原点取在两灯芯中心连线(y轴)的中点。计算的截面长为 3.6 cm,宽为 2.6 cm。将其分为 9×13 个网格,共 117 个待求数据点。条纹数据是从 19 个干涉图上读取的,其径向采样间隔 d 为 0.95 mm,每个观察方向的径向采样点数为 41 个,角间隔 4 为 5°。

利用场的纵轴对称性(物场放置如图1所示),则以上90°视角范围的干涉数据便扩充为175°视角范围的干涉数据,通过卷积法计算出折射率差f(x,y),然后通过(17)式(其中

	Table 5	The recons	LI UCUOII TESI		e temperatur	e neiu. 1 (a	(0)	
33.1	17.2	23.3	23.4	37.8	23.4	23.3	17.2	33.1
20.4	23.2	70.6	145.2	185.2	145.2	70.6	23.2	20.4
20.3	65.8	212.9	389.7	482.8	389.7	212.9	65. 8	20.3
23.6	126.9	383.3	922.4	1000.1	922.4	383.3	126.9	23.6
28.5	15 5.9	479.2	1050.8	1213.5	1050.8	479.2	155.9	28.5
26.5	146.5	453.2	987.0	1031.7	987.0	453.2	146.5	26.5
22.5	115.6	421.0	765.8	972.9	765.8	421.0	115.6	22.5
26.3	147.4	455.1	1029.1	1059.2	1029.1	455.1	147.4	26.3
28.9	161.4	490.2	1066.5	1262.0	1066.5	490.2	161.4	28.9
23.5	128.1	395.4	951.1	1039.6	951.1	395.4	128.1	23.5
21.1	66.3	217.8	401.8	510.8	401.8	217,8	66.3	21.1
20.3	24.2	72.2	146.5	191.2	146.5	72.2	24.2	20.3
33.5	16.9	23.2	24.2	38.2	24.2	23.2	16.9	33.5

 $T_0 = 20^{\circ}$ C, $n_0 = 1.000271$), 计算了 9×13 个温度值, 结果见表 3。

Table 3 The reconstruction results of flame temperature field: T(x, y) (°C)

我们用热电偶直接测量了纵轴(y 轴)上各点的温度,与相应点的重建结果相比,只是边缘处的值较差,其它处比较吻合(见表 4)。

Table 4 Comparison of thermocouple measurements and reconstruction results (°C)

method	$N\langle y angle$												
method	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
actual measurement	20	77	421	943	1189	1123	1073	1140	1249	1081	498	68	20
evolution	38	185	482	1000	1214	1031	973	1059	1262	1041	511	191	38

本实验误差除了干涉图的翻拍、底片的冲洗及条纹的判读等引起的处理误差外,最主要 的是原理计算式中略去了光线偏折的影响,根据文献[3]的估计光程差偏差的计算式,考虑 到本实验中获得的干涉图的最小条纹间隔,由光线偏折导致的光程差偏差不大于0.076%。

本文通过大视场全息干涉系统获得的实验数据,利用卷积算法重建了一个截面的温度 分布,结果表明该方法能提供经济有效的重建精度。但在实验处理过程中,利用了物场沿纵 轴的对称性。若实际的场不具有这种对称性,可采用下面任一处理措施;

其一是制作衍射级更高的相位光栅,进一步拓宽视角范围。

其二是利用其它的算法,对此,我们将在以后的报道处理的结果。

参考文献

- [1] R. D. Matulka, D. J. Collins; J. Appl. Phys., 1971, 42, No. 3 (Mar), 1109.
- [2] K. Murata, N. Baba et al.; Optik, 1979, 53, Heft 4 (Jul), 285.
- [3] C. M. Vest; «Holographic Interferometry», (John Wiley & Sons, New York 1979), 331.

A simple method of reconstructing refractive index field with a wide field angle

GAO YIQING, KANG QI AND DING HANQUAN (Beijing Institute of Aeronautics and Astronautics) (Beceived 27 January 1987; revised 30 April 1987)

Abstract

In this paper, a dual-illumination-beam and dual-reference-beam holographic system is designed with which interferograms of flame temperature field over a 90° angle of view are obtained instantaneously. A simple reconstruction metod is discussed. The effects of projection number and the measurement error on the reconstruction precision are determined by computer simulation. The temperature distribution in a plane are reconstructed from the experimental data. The results are compaed with thermocouple measurements.